If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-70x-180=0
a = 2; b = -70; c = -180;
Δ = b2-4ac
Δ = -702-4·2·(-180)
Δ = 6340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6340}=\sqrt{4*1585}=\sqrt{4}*\sqrt{1585}=2\sqrt{1585}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-2\sqrt{1585}}{2*2}=\frac{70-2\sqrt{1585}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+2\sqrt{1585}}{2*2}=\frac{70+2\sqrt{1585}}{4} $
| 3x^2+6x-72=0 | | -4.5-2.5=20.5+10x | | 5x2+33,4x-768,2=0 | | 5x2+53,8x-1640,9=0 | | 2x-8+7x=19 | | G(x)=64(0.5^x) | | 3/4x-5/4=6/4x | | (6x-7)=(4x+1) | | 3/4-5/x=6/4 | | 2a+7=a-3 | | (r+8)=(4r+8) | | 53=7a–10 | | a-21/2=11/12 | | t+38=430 | | (4x+5)=(6x+25) | | z+6.5z−4.1=2.8(z−6.5) | | 7-m=5(m-7) | | -5p-8=12 | | -2y+5(y+1)=25+7y | | 3h=h+20 | | -x-(8+x)=2 | | 5/2x-1/3x=4 | | 3(x-4)-6=-5(×-2) | | 2B=4(1+2x) | | (-t)/(3t-8)=1/4/t8/7 | | 2.9×b=8 | | 9x-3+7x+19+7=180 | | 1/2(2x-6)2/3(x-4)=x | | 3(x+2)-x=5x-9 | | x-5=1/2x+10 | | -104=-8(-7n-8) | | 3—2(16n+3)=24n |